Clearview Regional School District Math Dept. Summer Packet for Students Entering Honors Geometry Name: Dear Parent and Student, This summer packet is meant for students to practice the skills needed to be successful in Honors Geometry. -Students are expected to attempt all the problems and attempt them without a calculator. This packet will **NOT** count as a grade, however, there will be a quiz given in September, so this packet will be very helpful. Any questions please contact Mrs. Kelly through Classroom posted below or Mrs. Puitz by email listed below. -Detailed solutions and explanations to the summer packet will be posted on the Clearview website in August and also for 8th graders on classroom "Summer 2021 Honors Geometry". 8th GRADERS only Sign up for Summer 2021 Honors GEOMETRY Classroom code xmdvppa Highschool students Tpuitz@clearviewregional.edu Enjoy the summer! -Clearview Regional School District Mathematics Department #### A. MULTIPLYING POLYNOMIALS 1] $$(x^3 + 3)(x - 7)$$ $x^4 - 7x^3 + 3x - 21$ 3] $$(5x-6)(-x+\frac{1}{2})$$ - $5x^2 + \frac{5}{2}x + 6x - 3$ $$-5x^2 - \frac{17}{2}x - 3$$ $$2](x-4)(x^{2}+3x-5)$$ $$x^{3}+3x^{2}-5x$$ $$-4x^{2}-12x+20$$ $$\left(\frac{3}{x^3 - x^2 - 17x + 20} \right)$$ 4] $$(\sqrt{2} + x)(\sqrt{8} - x)$$ $4 - x\sqrt{2} + x\sqrt{8} - x^2$ $$4 + x\sqrt{2} - x^2$$ #### **B. FACTOR EACH OF THE EXPRESSIONS** 5] $$y^2 - 12y + 20$$ $$(y-10)(y-2)$$ 6] $$z^2 - z - 6$$ $$714ax^2 + 16ax + 16a$$ 9] $$6x^2 - 11x - 10$$ $$\left(2x-5)(3x+2\right)$$ $$8|2x^2 + 17x + 21$$ $$101 k^2 - 64w^2$$ #### C. RATIONALIZE EACH RADICAL EXPRESSION $$11] \frac{3\sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \boxed{\frac{3\sqrt{6}}{2}}$$ $$12]\frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \qquad \frac{\sqrt{5}}{5}$$ $$13] \frac{12}{3\sqrt{2}} \cdot \sqrt{2} \qquad \frac{12\sqrt{2}}{6}$$ $$14] \frac{xy}{\sqrt{x}} \cdot \frac{\sqrt{x}}{\sqrt{x}} \qquad \frac{xy\sqrt{x}}{x}$$ ### D. SOLVE EACH SYSTEM OF EQUATIONS USING SUBSTITUTION. 15] $$\begin{cases} 2x + y = 4 & \Rightarrow y = -2x + 4 \\ 3x + y = 1 \end{cases}$$ $$3x - 2x + 4 = 1$$ $$x + 4 = 1$$ $$x = -3$$ $$y = -2(-3) + 4$$ $\left(-3, 10\right)$ chick $$3(-3)+10=1$$ $$-9+10=1$$ 16] $$\begin{cases} y = 3x - 27 \\ y = \frac{1}{2}x - 7 \end{cases}$$ set equal $$3x - 27 = \frac{1}{2}x - 7 + 27 (8, -3)$$ $$3x = \frac{1}{2}x + 70$$ $$-\frac{1}{2}x - \frac{1}{2}x$$ $$2\frac{1}{2} \times = 20$$ $$(\frac{2}{5})\frac{5}{2} \times = 20 \left(\frac{2}{5}\right)$$ $$\times = 8$$ $$3^{\frac{1}{2}} \times = 20$$ $$3^{\frac{1}{2}} \times = 20$$ $$3^{\frac{1}{2}} \times = 20$$ $$y = 3(8) - 2$$ $y = 24 - 27$ $y = -3$ ### E. SOLVE EACH SYSTEM OF EQUATIONS USING ELIMINATION 17] $$\begin{cases} 3k + 5g = -12 & \times 3 \\ 2k - 3g = -8 & \times 5 \end{cases}$$ 18] $$\begin{cases} 2k - g = 8 \\ 6k - 3g = -9 \end{cases}$$ $$9K + 15g = -36$$ $10K - 15g = -40$ $$-6K + 3g = -24$$ $$6K - 3g = -9$$ $$0 = -33$$ 10K - 15g = -40 Chick 3(0) = -8 19K = -76 2(-4) + 5g = -12 -12 + 5g = -12 5g = 0 = 0F. SIMPLIFY FACIORIA false No Solution or $\sqrt{576} = 24$ ### H RADICAL EXPRESSION $$20] \sqrt{215}$$ $$5 43$$ $$5 43$$ $$5 \text{ Simplified}$$ both prime $$211\sqrt{20x^2}$$ $$22]\sqrt{12}\cdot\sqrt{48}$$ 23] $$\sqrt{32} + \sqrt{54} - \sqrt{98}$$ ### G. EVALUATE EACH OF THE EXPRESSIONS WITHOUT THE USE OF A **CALCULATOR** 24] $$45 - [3(5-3)]$$ $45 - [3(2)]$ 39 26] What does $$2x^2 + 3x - 4$$ equal when $x = -3$? -88.33 $$[5\frac{1}{3}] (5\frac{1}{3}) \div (3\frac{1}{5})$$ $$36]\frac{10}{38} \cdot \frac{9}{50}$$ 25] $$(9^2 + 4 \cdot 9 \div 4 - 6) \div 3$$ $(81 + 36 \div 4 - 6) \div 3$ $(81 + 9 - 6) \div 3$ $(81 + 9 - 6) \div 3$ $$(81+9-6)\div 3$$ $$27] -21 - (-0.8)$$ $$29]_{\frac{15}{16} - \frac{7}{20}}^{\frac{4}{15}}$$ $$\frac{75}{80} - \frac{28}{80}$$ 31] $$(1\frac{1}{5})(4\frac{1}{2})$$ $$\begin{pmatrix} \frac{2}{5} \end{pmatrix} \begin{pmatrix} \frac{9}{2} \\ \frac{1}{5} \end{pmatrix}$$ 33] $$-21.07 \div (-4.3)$$ $$35$$] $\frac{3}{10} + \frac{1}{4}$ $$37]\ 0.35 \times 0.3$$ ### H. SOLVE EACH LINEAR EQUATION BELOW FOR 'X' $$39] \frac{4x+2}{3} = (5x-1)^{3}$$ $$4x+2 = 15x-3$$ $$+3 - 4x$$ $$5 = 11x$$ $$11$$ $$41] 2x - 12y = 10$$ $$+ 12y + 12y$$ $$2x = 12y + 10$$ $$x = 6x + 5$$ ## I. EVALUATE EACH EXPRESSION WITHOUT A CALCULATOR. LEAVE ALL FINAL ANSWERS IN SIMPLEST FORM. $$43] \frac{2}{3} + \frac{3}{4} + \frac{5}{6}$$ $$\frac{8}{12} + \frac{9}{12} + \frac{10}{12}$$ $$45] \left(\frac{4}{3} \times \frac{9}{1}\right) \div \left(\frac{3}{4} \times \frac{8}{9}\right)$$ $$12 \div \frac{2}{3}$$ $$\times \frac{3}{4} \times \frac{10}{12}$$ $$12 \div \frac{2}{3} \times \frac{10}{12}$$ $$\times \frac{3}{4} \times \frac{10}{12}$$ $$44] \frac{2x}{3} + \frac{3x}{8}$$ $$\frac{16x}{24} + \frac{9x}{24}$$ $$46] \left(\frac{mt}{p}\right) \left(\frac{pt}{m}\right)$$ # J. USE THE DISTANCE AND MIDPOINT FORMULAS TO ANSWER THE FOLLOWING QUESTIONS A rectangle has vertices located at A(13,1) B(3,1) C(3,15) and D(13,15) Graph the rectangle on the grid provided. 47] What is the length of the rectangle from A to B? from B to C? 48] What is the length of a diagonal from A to C? (13,1) (3,15) $$AC = \sqrt{(13-3)^2 + (1-15)^2}$$ $$\sqrt{10^2 + (14)^2}$$ $$\sqrt{100 + 196} = \sqrt{296}$$ 49] What are the coordinates of the midpoint between A and C? (13, 1) (3, 15) $$\frac{13+3}{2}$$, $\frac{1+15}{2}$ (8.8) 50] What is the slope of . . . - Line AB? - · Line BC? undefined - A line perpendicular to diagonal \overline{AC} ? $m \quad \text{of} \quad AC \quad -\frac{14}{10} = \frac{-7}{5}$ $m \quad \text{of} \quad AC \quad -\frac{14}{10} = \frac{5}{5}$ ### K. GRAPH EACH LINEAR EQUATION ON THE COORDINATE PLANES PROVIDED. $$51] \frac{4y}{4} = \frac{16}{4} + \frac{2x}{4}$$ $$m = \frac{1}{2}$$ b = 4 $$52] 2x + 5y = 10$$ $$x = 5$$ $$53]\frac{x}{4} - \frac{y}{3} = 2$$ $53]\frac{x}{4} - \frac{y}{3} = 2$ clear fraction multiply by 12 $$3x - 4y = 24$$ $$-\frac{4y}{-4} = \frac{-3x}{-4} + \frac{24}{-4}$$ $$y = \frac{3}{4}x - 6$$ ### L. WRITE THE EQUATION OF THE LINE FROM THE GIVEN INFORMATION. 54] Write an equation in <u>slope-intercept</u> form of the line that passes through (2,5) and has slope = -3. $$y = m \times + b$$ $$5 = -3(2) + b$$ $$5 = -6 + b$$ $$11 = b$$ 55] Write an equation in slope-intercept form of the line passing through (0,1) and is perpendicular to the line 2x + 4 = y. y-intercept $$m=2$$ $\frac{1}{2}$ $m=-1/2$ $$y = -\frac{1}{2} \times +1$$ 56] Write an equation in <u>slope-intercept</u> form of the line passing through (4,6) and is parallel to the line $y = \frac{2}{3}x + \frac{10}{3}$. $$y = m \times + b$$ $b = \frac{2}{3}(4) + b$ $0 = \frac{6}{3} + b$ $0 = b$ 57] Write an equation in slope-intercept form of the line passing through (-9,5) and is perpendicular to the line y = -3x + 2. $$5 = \frac{1}{3}(-9) + 5$$ $$5 = -3 + 6$$ $$8 = 6$$ $$y = \frac{1}{3}x + 8$$ # M. FOR #58-60 DETERMINE IF THE PAIR OF LINES ARE PARALLEL, PERPENDICULAR, OR NEITHER. 58] $$y = 2x + 5$$ $m = 2$ $y = -2x + 4$ $m = -2$ 60] $$x = 3y + 2$$ $y = \frac{1}{3}x - 3$ $x = 3y + 2$ $y = \frac{1}{3}x - 3$ $x = 3y + 2$ $y = \frac{1}{3}x - 3$ $y = \frac{1}{3}x - \frac{2}{3} = \frac{3}{3}y$ Same Parallel 59] $$2y + 3x = 5$$ $3y = 2x - 7$ $$y = \frac{3}{2}x + \frac{5}{2}$$ $$y = \frac{3}{2}x - \frac{7}{3}$$ $$m = \frac{3}{2}$$ opposite reciprocals Perpendicular # N. FOR EACH PROBLEM BELOW, THE SLOPE OF A LINE IS GIVEN. DETEMINE THE SLOPE OF THE PERPENDICULAR LINE. 62] $$m = -6$$ $$-1 m = \frac{1}{6}$$ 63] $$m = -1/11$$ $$\frac{1}{1} m = \frac{11}{1} or$$ 64] $$m = -\sqrt{2}$$ $$\lim_{m \to \infty} \frac{1}{\sqrt{2}} = \lim_{m \to \infty} \frac{\sqrt{2}}{\sqrt{2}} = \lim_{m \to \infty} \frac{\sqrt{2}}{\sqrt{2}}$$ SOME HINTS: These are just a few hints, please utilize online resources for help if necessary. A) MULTIPLYING POLYNOMIALS BY THE *FOIL* METHOD: $$(5x-3)(4x+1)$$ $$20x^{2} + 5x - 12x - 3$$ F O | 1 $$20x^{2} - 7x - 3$$ **B) FACTORING** Steps for Factoring a QUADRATIC Equation $$ax^2 + bx + c$$ - 1) Factor out GCF (if possible) - 2) Set up the Magic X - ac goes on top, b goes on the bottom - find the pair that multiplies to the top and adds to the bottom - 3) Set up the Magic T - put ax on the top two and the pair we found for the bottom two - treat each side as a fraction and reduce - 4) you now have your factors Example → (3)(10) = 30 (5)(6) = 305 + 6 = 11 $3x^2 + 11x + 10$ =(3x+5)(x+2) GCF = 1 1) Factor out GCF 5 30 6 2) Magic X What pair multiplies to equal top and adds to bottom? 3) Magic T Reduce 4) You have your factors C) RATIONALIZE THE DENOMINATOR - 1) Multiply the "top" and bottom by the square root in the denominator. - 2) Simplify the numerator if necessary. The denominator will become the square root of a perfect square. - 3) Reduce the fraction if necessary. F) SIMPLIFYING RADICALS #### J) DISTANCE AND MIDPOINT FORMULA # Distance Formula used to find the length of a segment # Midpoint Formula used to find the exact center between 2 points #### K) GRAPHING LINEAR EQUATIONS #### Slope-Intercept Form #### L) WRITE AN EQUATION OF A LINE ### Write an Equation in Slope-Intercept Form A line passing through (2,2) and (3,4) Find the equation of a line Through (1,10) and Perpendicular to 2x-y=2